• Tlaloc_Temporal@lemmy.ca
    link
    fedilink
    English
    arrow-up
    3
    arrow-down
    9
    ·
    5 months ago

    I strongly agree with you, and while the people replying aren’t wrong, they’re arguing for something that I don’t think you said.

    1/3 ≈ 0.333… in the same way that approximating a circle with polygons of increasing side number has a limit of a circle, but will never yeild a circle with just geometry.

    0.999… ≈ 1 in the same way that shuffling infinite people around an infinite hotel leaves infinite free rooms, but if you try to do the paperwork, no one will ever get anywhere.

    Decimals require you to check the end of the number to see if you can round up, but there never will be an end. Thus we need higher mathematics to avoid the halting problem. People get taught how decimals work, find this bug, and then instead of being told how decimals are broken, get told how they’re wrong for using the tools they’ve been taught.

    If we just accept that decimals fail with infinite steps, the transition to new tools would be so much easier, and reflect the same transition into new tools in other sciences. Like Bohr’s Atom, Newton’s Gravity, Linnaean Taxonomy, or Comte’s Positivism.

    • skulblaka@sh.itjust.works
      link
      fedilink
      English
      arrow-up
      2
      arrow-down
      1
      ·
      5 months ago

      That does very accurately sum up my understanding of the matter, thanks. I haven’t been adding on to any of the other conversation in order to avoid putting my foot in my mouth further, but you’ve pretty much hit the nail on the head here. And the higher mathematics required to solve this halting problem are beyond me.