Relativistic time dilation is nonlinear, so the time dilation “multiplier” approaches infinity as you approach the speed of light. So you will never need more than 1c to pass any finite amount of time for the observer while only passing a smaller amount of time for the moving object. Using a time dilation calculator, it looks like 1 day inside the moving object to 72 years for the stationary observer works out to roughly 99.9999999% the speed of light (9 nines total). Of course if you take into account earths movement as a “stationary” baseline then it’ll depend on whether you’re moving with or against the fast moving object.
It used to melt my brain too but there’s no need to know “absolutely stationary” since you’re comparing 2 objects. And due to the time dilation, the 1c limit is different depending on the observer, the time dilation will prevent anyone from observing >1c even if one person is going 0.9c relative to another person who is also going 0.9c relative to a stationary observer.
Relativistic time dilation is nonlinear, so the time dilation “multiplier” approaches infinity as you approach the speed of light. So you will never need more than 1c to pass any finite amount of time for the observer while only passing a smaller amount of time for the moving object. Using a time dilation calculator, it looks like 1 day inside the moving object to 72 years for the stationary observer works out to roughly 99.9999999% the speed of light (9 nines total). Of course if you take into account earths movement as a “stationary” baseline then it’ll depend on whether you’re moving with or against the fast moving object.
It used to melt my brain too but there’s no need to know “absolutely stationary” since you’re comparing 2 objects. And due to the time dilation, the 1c limit is different depending on the observer, the time dilation will prevent anyone from observing >1c even if one person is going 0.9c relative to another person who is also going 0.9c relative to a stationary observer.